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influence on the scattering processes in semiconductors 
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Saratov State University, 410071 Saratov, Astrachanskaya 83, USSR 
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Abstract. The constant-field influence on the electron scattering processes in semiconductors 
is shown to lead to correction of the static conductivity. This correction is non-zero in 
particular for the absence of electron heating. In the case of acoustic phonon scattering, 
the correction is small. For optic phonon scattering and ionised impurity scattering, the 
corrections can be of the order of a few per cent and 10-20%, respectively. 

1. Introduction 

In recent years the problem of correction of the Boltzmann equation for free-charge 
carriers in semiconductors under a strong uniform electric field has been intensively 
discussed [l-151. The quantum kinetic equation in the presence of a constant electric 
field acting on the electron scattering processes has been derived by the Green function 
technique [3,10,15] and by use of the generalised kinetic equations [l, 2,16, 171. The 
kinetic equation for electrons with the Airy wavefunction is also considered [4,5]. The 
possible corrections of the Boltzmann equation due to non-zero scattering time and non- 
zero de Broglie wavelength of electron have been discussed [3,6-9,111. The change in 
scattering cross section in the presence of a constant external field has been explored as 
a rule in the strong-field approximation. The corresponding correction has been found 
to be non-linear in the electric field and estimated to have an order of magnitude of both 
10% [3,7,8] and 0.1 or 0.001% [ll, 121. 

In this paper the balance equation for the electron temperature T, and drift momen- 
tum hko using the displaced Maxwell distribution function are obtained on the basis of 
the kinetic equation taking into account thecollisionintegral dependence on the constant 
electric field E .  The solution of these equations in the case of small anisotropy has shown 
the existence of corrections r and p in the current: 

where j o  is the current obtained with the usual collision integral (i indicates the scattering 
types). The appearance of these corrections is caused by the collision integral depen- 
dence on the field E ,  which distorts the conventional b-form of energy conservation in 
collision. For E + 0 the quantities p and vi tend to zero. The quantities Ti depend on 
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the field via T, and differ from zero also without heating of electrons (T ,  is measured in 
energy units). 

We are concerned with the physical sense of these corrections in the limit h +- 0 for 
ionised impurity scattering, in the classical analogue case, i.e. gas plasma. At h + 0 we 
obtain rim = -e2/6&,,rDTe ( E ~  is the static permittivity of lattice and r D  is the Debye 
radius) which exactly agrees with the case of gas plasma [18, p 2601. Thus the quantity 
Ti is proportional to the ratio of the interaction electron energy with the scatterer to the 
electron kinetic energy. In the region of temperatures and charge carrier concentrations 
where the de Broglie wavelength is of the order of rD,  the behaviour of rim differs 
essentially from that for h + 0. In this classical limit we obtain vim = -i(eErD/T,)2, i.e. 
vim is proportional to the square of the electron energy due to the external field during 
the collision time. At  h + 0 for impurity scattering we get /3 - (eErD/T,)2; however, the 
proportional coefficient tends to zero in this limit. 

2. Balance equations and corrections to conductivity 

The kinetic equation for non-degenerate electrons interacting with phonons and chaotic 
ionised impurities in the presence of a uniform constant external field E is given by 

- N i ) f ( k  - eEz)] COS &k - & k + q  f hog) + - zeEq 
2m 

- [(l + N i ) ) f ( k  - eEz) - N f ) f ( k  + q - eEz)] 

where &k = h2k2/2m, k and q are wavevectors, no, is the phonon energy, Nq is the 
phonon distribution function, g(q)  is interaction constant for the scattering mechanism 
i (for an impurity, Nq = hw, = 0). This equation has been derived by different methods 
[3, 171; it also follows from the generalised equation [16]. At h+ 0 ,  for impurity scat- 
tering, equation (1) transforms to the classical kinetic equation taking into account 
the field dependence of the collision process. The latter equation can be obtained 
independently by methods of classical statistical mechanics and from it the above- 
mentioned classical correction Tim to conductivity follows. 

The analysis of equation (1) is difficult because of the term eEz in the argument of 
the distribution function. From the derivation of the balance equations, it follows, 
however, that the elimination of this term compared with kleads in particular to a change 
in the sign of Ti and thus to a contradiction with the result for gas plasma. Therefore it 
is convenient to take the model distribution function to produce the balance equations 
for energy and momentum, because the field dependence of the collision integral in 
these equations can be included sufficiently correctly. The displaced Maxwell dis- 
tribution leads to a rather complex system of equations for T, and hko which is not 
interpretable obviously. So the small-anisotropy approximation has been chosen for 
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simplicity: f ( k )  = f o ( k ) ( l  + 2A2kk0), fo(k)  - exp(-Ek/Te), A = fi/m. In this 
approximation the momentum balance equation is as follows: 

where q = x/A, a = eEA/T,, yi  = hcc)$)/Te, 

d sin(axy2) z2 = $ Jox $ exp(-x2y2) sin[y(x2 + yi)l - 
dY Y 2  

1 3  = ;Jox - exp(-x2y2) sin[y(x2 + y i )]  sin(axy2). 

In equation ( 2 ) ,  for polar optical scattering (i PO), lgpO(q)l2 = 2ne2fio/Eq2 and E-' = 
E ; ~  - &il, for deformation optical scattering (i = do), lgdO(q)l2 = f i D 2 / 2 p o  and for 
ionised impurity scattering (i im), lgim(q)I2 = n i m T f / n 2 ( 1  + q 2 r L ) 2 ,  where D is the 
coupling constant, p is the density, nim is the impurity concentration, n is the free charge 
carrier concentration and cc) is the optical phonon frequency. To obtain the balance 
equation ( 2 )  the displaced Maxwell distribution function may be used with subsequent 
expansion of Ako in the first order. We do not write the energy balance equation in this 
work, because it is necessary to evaluate T, only. Direct expansion Zj ( j  = 1 , 2 , 3 )  over a 
to high orders gives at x + 0 either a divergence term in ( 2 )  (for deformation acoustical 
or impurity scattering) or a series for which the convergence is difficult to prove (for 
polar optical or deformation optical scattering), but the upper estimation and different 
representations of the Dirac &function allows us to show that the behaviour of Zj for 
x + 0 andx + CQ is that the integral over x in ( 2 )  converges for a # 0 and is restricted for 
a+ 0. In the lowest order the expansion Zj over a leads to Z,(a+ 0) = Z; - 
a, Zj(a+ 0) = Zj = Zj(x, 0, yi) (j = 2 ,  3) .  Direct calculation shows convergence of Zj 
( j  = 1 ,  2 ,  3) on integration of x in ( 2 ) .  The above-mentioned results mean that the 
integral Zj  - Zj of x converges and that Zi - I,! + 0 at a+ 0. By calculating the limit 
(I, - Zj)/a" for CY+ 0 it can be proved that Zj - I,' - a2Zj when a -e 1 .  Therefore, at 
a Q 1, Zj ( j  = 1 ,  2 ,  3) gives the main contribution to the momentum balance equation 
and to the current density. The calculation of Zj and Zj - Zj at a Q 1 leads to the following 
expression for the current density: 

hko ne2 1 + r 
J = ne-  = -- E v = &  

m m v l + / 3  i 
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where vi is the corresponding collision rate. By introducing the functional F(A, yi) of the 
functionf(x, yi) according to the rule 

we can write 

qi(a) = (a2/5ri)F(A, Yi) [(l/x) 1F1(4, H; -p2(yi))l ( 5 )  

Pi(@) = - ( 3 f i / 8 ) a 2 ( ~ e / f i ) ~ ( ~ ,  ~ i ) { e x ~ [ - p ~ ( ~ i ) I  - 4p2(Yi) + i+ ' (~ i ) I>  (6) 
where lF1 is the degenerate hypergeometric function [19], p ( y )  = (x2  + y)/2x.  For 
impurity scattering in equations (3)-(6), Nq = y = 0. In the cases of optic and impurity 
scattering the integrals (4)-(6) can be calculated analytically. The result is represented 
for Ti and vim as follows: 

where 

a(a) = dx  exp( - x )  x-l12 laffi 
a = (A/2rD)2 and I&) is the modified Bessel function of the first kind [19]. Nq = N,,, is 
supposed to be equilibrium. 

When h --f 0 the limit of rim is obvious and it has been written above. The quantity 
vim at h + 0 may be expressed via zo = rD/v (v = m), where zo is the time of flight 
of the electron across the Debye radius: 

qim(fi+ 0) = -$(eErD/Te)2 = -ge2E2zi/mTe. 

Generalising this relation to the quantum case we get the following expression for the 
interaction time zim with impurity centre: 

rim = [-  b ( m ~ ~ / e ~ ~ ~ ) q ~ , ] ~ I ~  

which depends on E only via T,. When a S- 1 we obtain zim = toa3/2 ( 5 6 / 2 )  'I2. To save 
space, we shall not write the expressions for (known) vi, pi and qi for phonon scattering. 
The quantity r d a  cannot be calculated analytically and the computation result for n-Ge 
is r d a  - lo-'. In this case the integration of x in the spontaneous acoustic phonon 
emission term of equation (4) must be limited by the phonon maximum wavevector. 
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Figure 1. The value of the correction to con- 
ductivity for optical phonon scattering: curve A, 
n-Ge; curve B, p-Ge; curve C, n-GaAs. 

T (K)  

Figure 2. The value of the correction to con- 
ductivity for ionised impurity scattering as a func- 
tion of temperature at n = ni, = curve 
A, n-Ge; curve B, p-Ge; curve C ,  n-GaAs. 

Figure 3. The value of the correction to con- 
ductivity for ionised impurity scattering as a func- 
tion of n (=ni,) concentration: curve A, n-Ge, T 
(K) = 20 K; curve B, p-Ge, T (K) = 80 K; curve 
C, n-GaAs, T(K) = 20 K. 

The energy balance equation has been solved to evaluate (Y and the dependence T,( E )  
for n-Ge (n  = 10l6 cm-3 and T (K) = T/kB = 4 or 20 K) has been found (kB is the 
Boltzmann constant). This computation leads to (Y’ 5 lo-’ for any value of E ;  this does 
not contradict the model used for the distribution function. It has also been found that 
the value of T, is only weakly influenced (by a few per cent) by the corrections arising 
from the explicit field dependence of collision integral. By calculating integrals (3)-(6) 
the following estimates can be obtained (for n-Ge): IPI 6 and Xi lriqil 6 lO-’which 
agrees with [ 121. 

3. Numerical results and conclusions 

Numerical results of the Ti calculation for the non-heating field case (T,  = T )  are shown 
in figures 1-3 for three semiconductors: n-Ge, p-Ge (only the heavy holes have been 
taken into account) and n-GaAs. For n-Ge we have used D = 4 X 10’ eV cm-’ and for 
p-Ge D = 1.19 x lo9 eV cm-‘ [20]. When T (K) = T/kB G 50 K the Born approxi- 
mation is inadequate for describing the Coulomb scattering in p-Ge [21] and hence curve 
B in figure 2 is associated with the present scattering model in this temperature region. 
The above analysis indicates that the influence of the explicit static field dependence of 
the collision integral is small for phonon scattering (in the range of the used approxi- 
mations). The correction corresponding to ionised impurity scattering is essential in the 
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region of parameters, where r D  - A ,  and it has a value of about 10-20%. In this region 
the static field influence on collisions modifies the temperature dependence of the 
semiconductor conductivity. For the materials considered, the region - A cor- 
responds to the situation when the ionised impurity scattering rate of electrons is 
dominant. 
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